
ZeroSlip

Juuso Roinevirta
juuso@ape.llc

January 2023

February 2023 Revision

Abstract
This whitepaper introduces the concept of a zero slippage, zero price impact
automated market maker, a zsAMM. It outlines some of the motivations and
design decisions behind the intended implementation of the zsAMM in the
ZeroSlip core contracts. It gives a high-level overview of the core contracts and
suggests potential use cases for the zsAMM beyond implementing equal asset
swaps. Finally, the paper suggests potential future versions and modifications.

Contents
0. Definitions 1

1. Introduction 1

2. Motivation 1

3. Guiding principles 2

4. Mechanism & Features 2
4.1 ZeroSlipFactory 3
4.2 ZeroSlipPool 3
4.3 ZeroSlipERC20 4

5. Use cases 4

6. Future versions & modifications 5

7. Disclaimer 5

8. Acknowledgements 5

9. References 5

Appendix A: Gas Cost Overview 7

Appendix B: Symbols and Formulas 8

0. Definitions
AMM. Automated market maker.

Callable liquidity. A feature of the zsAMM
where an LP commits to providing liquidity on
demand while retaining the ability to use and commit
their assets elsewhere.

CLOB. Central limit order book. A common
system for matching buyers and sellers in centralised
trading systems.

DEX. Decentralised exchange. Commonly,
an AMM implemented on a blockchain.

Equal assets. Equal assets are considered
asset pairs whose value is the same or whose price is
determined based on the same factors and will always
return to equivalency over time. Equal assets may
also be priced equal to each other, subject to a ratio
or a multiplier. Generally, equal assets will exhibit
the property over the𝑝𝑟𝑖𝑐𝑒

0
∼ 𝑘 × 𝑝𝑟𝑖𝑐𝑒

1
long-term while short-term fluctuations may cause
temporary shifts in market price where

.𝑝𝑟𝑖𝑐𝑒
0

≠ 𝑘 × 𝑝𝑟𝑖𝑐𝑒
1

ERC20. A standard and widely used design
for fungible tokens within EVM environments.

EVM. Ethereum Virtual Machine.
Invariant. An immutable property. In this

paper, it usually refers to the zsAMM invariant (see
Appendix B).

LP. Liquidity provider. An entity supplying
supported assets to the zsAMM pool.

OTC. Over-the-counter. Usually, refers to
trading assets via broker-dealer networks directly
between two parties in bilateral agreements or
through centralised clearing counterparties.

zsAMM. Zero slippage automated market
maker. The concept introduced in this paper.

1. Introduction
ZeroSlip is an on-chain system of smart contracts
built in Solidity for use on the Ethereum Virtual
Machine. It implements a zero slippage automated
market maker (“zsAMM”) protocol similar to the
design of Uniswap v2 with a few changes restricting
its scope and uses further from the general purpose
solution. While the base use case for the zsAMM is
swapping equal assets, its design also introduces
special properties & use cases as outlined in section
5, such as CLOB-like properties, binary options, and
token migration contracts.

The zsAMM implements a strict invariant
condition where is an𝑡𝑜𝑘𝑒𝑛

0
= 𝑘 × 𝑡𝑜𝑘𝑒𝑛

1
𝑘

immutable variable defined at the construction of the
contract. Due to the invariant, the prices of the tokens
are always fixed to each other at a constant exchange
rate. This reduces the potential uses of the zsAMM to
a very limited set of assets whose value is the same
or whose price is determined based on the same
factors and will always return to equivalency over
time. In this paper, assets of this type are referred to
as equal assets. Creating a zsAMM pool for assets
whose value is expected to diverge from each other
over time will lead to irrecoverable losses to liquidity
providers (“LP”) through arbitrage.

While section 4 covers some of the functions
exposed by the zsAMM core contracts, the list of
functions is not exhaustive, and this paper does not
intend to serve as a technical reference. Furthermore,
it should be noted that it may be more beneficial for
users to access the zsAMM core contracts through
routers which are not covered in this paper.

2. Motivation
The current design space of automated market maker
(“AMM”) systems is mostly for generalised
applications. Such AMMs include, among others: a)
Uniswap v2, designed for the exchange of two
arbitrary assets following the constant𝑥 × 𝑦 = 𝑘
product formula (Adams et al., 2020); b) Curve’s

1

StableSwap, designed for the exchange of n assets
whose value closely tracks each other by
implementing the StableSwap invariant, which can

be generalised as (𝑥 + 𝑦) + (𝑥 × 𝑦) = 𝐷 + 𝐷
𝑛()𝑛

where is the number of assets in the pool (Curve.fi,𝑛
2021; Mota, 2021); c) Uniswap v3, designed for the
exchange of two arbitrary assets, through the
introduction of concentrated liquidity – or bounded
liquidity – (Adams et al., 2021) proxying the
properties of a central limit order book (“CLOB”),
given the restrictions of the EVM; and d) Balancer
invariant spot price surface.

While all of these designs are highly
effective and efficient for different use cases, none of
them serves equal asset swaps with high efficiency;
with Uniswap v2, traders will incur high costs due to
price impact, StableSwap subjects the traders to high
gas costs due to the complex calculations required to
check the invariant conditions, and Uniswap v3’s
bounded liquidity is computationally inefficient for
LPs and, also, traders if liquidity bounds are crossed.

Hence, the most effective way to access
liquidity in equal assets is through a CLOB or an
over-the-counter (“OTC”) desk, assuming liquidity is
available. Furthermore, providing liquidity to CLOBs
or OTC desks is not permissionless, and they do not
enjoy the same economies-of-scale benefits as their
permissionless alternatives.

ZeroSlip’s zsAMM aims to target the niche
of trading equal assets. It focuses on providing
extremely gas-efficient trades between two assets
while subjecting LPs to high trust assumptions with
respect to the value of the assets within the trading
pair. The gas efficiency of the zsAMM is further
explored in Appendix A. Consequently, the LPs in a
zsAMM should be extremely conscious of the nature
of the assets they are providing, as a discrepancy in
the price of one asset will cause the higher-value
asset to be completely drained from the pool.

Given the focus of the zsAMM on
computationally efficient trades between arbitrary
equal assets, most of the volume in a zsAMM system
is anticipated to originate from actors such as
arbitrage bots, market makers, and other
non-human-users accessing the zsAMM for liquidity.

3. Guiding principles
ZeroSlippage’s zsAMM is designed to be: a)
permissionless – anyone with access to the
environments in which zsAMM is deployed in can

choose to use it, either as an LP or as a trader; b)
computationally efficient – all actions, especially
those of the traders, should be computationally as
efficient as possible to allow for low-cost transactions
and utilisation of the smallest possible arbitrage
opportunities to provide market efficiency; c)
composable – the design is centred around generality,
such that it can be integrated into other protocols,
aggregators, and systems; d) generally applicable –
the design allows for various equal assets to be
traded, regardless of the value of , and LPs to set𝑘
risk parameters through the use of various fee
schemes; and 3) immutable – once deployed, the core
functions of the smart contracts cannot be changed.

4. Mechanism & Features
At its core, zsAMM is a simple peer-to-pool contract
that allows two distinct parties to interact with the
pool; traders & LPs.

Traders may interact with the pool to swap
an asset (“ ”) for another asset (“ ”) at a𝑡𝑜𝑘𝑒𝑛

0
𝑡𝑜𝑘𝑒𝑛

1

predetermined ratio 𝑡𝑜𝑘𝑒𝑛
0

= 𝑘 × 𝑡𝑜𝑘𝑒𝑛
1

(“invariant”). Swaps work bidirectionally, hence it is
possible to also swap for as long as𝑡𝑜𝑘𝑒𝑛

1
𝑡𝑜𝑘𝑒𝑛

0

the invariant is not violated. The invariant ensures all
trades happen at a pre-defined rate, less fees. If, for
example, a swap from gives the𝑘 = 1 𝑛 𝑡𝑜𝑘𝑒𝑛

0

trader exactly , less fees. Furthermore,𝑛 𝑡𝑜𝑘𝑒𝑛
1

trying to swap for will fail if𝑡𝑜𝑘𝑒𝑛
0

𝑛 𝑡𝑜𝑘𝑒𝑛
1

𝑛

exceeds the reserve balance of in the pool𝑡𝑜𝑘𝑒𝑛
1

and vice versa. Reserve balances of and𝑡𝑜𝑘𝑒𝑛
0

are denoted and ,𝑡𝑜𝑘𝑒𝑛
1

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
0

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
1

respectively.
LPs may interact with the pool to exchange

assets supported by the pool to liquidity provider
tokens (“LPT”). LPT accrue fees paid by traders
from swaps happening within the pool through the
increase in assets per LPT within the pool. Liquidity
of a pool, or the reserve value of the pool, is
calculated as 𝑅𝑉 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑒

0
 + 𝑘 × 𝑟𝑒𝑠𝑒𝑟𝑣𝑒

1

and the value of LPT, denominated in , is𝑡𝑜𝑘𝑒𝑛
0

calculated as (“LPT value𝐿𝑃𝑇 = 𝑅𝑉
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐿𝑃𝑇

formula”). Hence, as the pool’s reserve value
increases due to accrued fees from swaps, the value
of an LPT increases through an increased claim to the
reserve assets, ceteris paribus.

2

In an effort to improve the capital efficiency
of the LPs, the zsAMM also introduces the concept
of callable liquidity. Callable liquidity allows LPs to
commit their assets for use in trades on demand. For
example, an LP can commit 100 units of for𝑡𝑜𝑘𝑒𝑛

0

use in trades in pools and , simultaneously, while𝑥 𝑦
retaining possession of the tokens. Should a trader
want to trade for in pool , the trader𝑡𝑜𝑘𝑒𝑛

1
𝑡𝑜𝑘𝑒𝑛

0
𝑥

can call the liquidity from the LP, on demand, in
order to fulfil their trade. Effectively, the LP is not
committing or “locking” any capital prior to the trade
taking place, ensuring their capital is directed to the
most demanded trading venue at any one time,
improving the LP’s capital efficiency.

Two fee types apply to interactions with the
zsAMM: the swap fee rates () and LP withdrawal𝐹

𝑆

fee rate (). All fee rates are defined in tenths of a𝐹
𝑊

basis point ().1
100 000

The swap fee is applied to swaps between
two assets. The swap fee rate can be determined
based on the direction of the swap; applies to𝐹

𝑆1

swaps from to and applies to𝑡𝑜𝑘𝑒𝑛
0

𝑡𝑜𝑘𝑒𝑛
1

𝐹
𝑆0

swaps from to . The swap fees are𝑡𝑜𝑘𝑒𝑛
1

𝑡𝑜𝑘𝑒𝑛
0

charged from the token sent () to the𝑡𝑜𝑘𝑒𝑛
𝑖𝑛

zsAMM, maximising liquidity of the outbound token
() and allowing one side of the pool to be𝑡𝑜𝑘𝑒𝑛

𝑜𝑢𝑡

completely drained with a single transaction.
Due to potential fee skirting issues associated

with low trade sizes (i.e. cases where
), the absolute swap fee is𝑡𝑜𝑘𝑒𝑛

𝑖𝑛
× 𝐹

𝑆
< 100 000

determined as where𝐹
𝑆𝑎

= 𝐹
𝑆

= 0 ? 0 : 𝑛 𝐹
𝑆

+ 1{ }
is the amount of . Hence, if the𝑛 𝑡𝑜𝑘𝑒𝑛

𝑖𝑛
𝐹

𝑆
> 0

minimum absolute swap fee is always 1 unit of
.𝑡𝑜𝑘𝑒𝑛

𝑖𝑛

The withdrawal fee is applied to LPs burning
LPT for one of the pool’s tokens. The withdrawal fee

rate is defined as where𝐹
𝑊

= 𝐹
𝑆

= 0 ? 1 :
𝐹

𝑆

4 { }

is the swap fee to . Similar to the swap𝐹
𝑆

𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡

fee, the withdrawal fee would be subject to fee
skirting issues with withdraw sizes satisfying

. Hence the absolute𝑡𝑜𝑘𝑒𝑛
𝑖𝑛

× 𝐹
𝑆

< 400 000

withdrawal fee is defined as where𝐹
𝑊𝑎

= 𝑛 𝐹
𝑊

+ 1

is the amount of . It follows from the fee𝑛 𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡

structure that LPs can lose money a) by exiting the

pool before swap fees have recouped the cost of exit;
b) if they provided liquidity to a zero-fee pool; or c)
through impermanent loss.

It follows from the properties of the zsAMM
that it is a) a zero slippage AMM as there is no
external price input; and b) a zero price impact AMM
as is immutable.𝑘

4.1 ZeroSlipFactory
The ZeroSlipFactory is a utility used for the creation
of new ZeroSlipPools. It exposes a public function
called createZeroSlipPool() which allows the
permissionless creation of a new zsAMM pool. It
takes the addresses of & , fee𝑡𝑜𝑘𝑒𝑛

0
𝑡𝑜𝑘𝑒𝑛

1

information, and the value of as its arguments. It𝑘
emits a PoolCreated() event.

The deployer of a pool can determine its
swap-fee structure. Each pool has two fees; and𝑓

𝑆0

which define the swap fee, in tenths of basis𝑓
𝑆1

points, when swapping from to and𝑡𝑜𝑘𝑒𝑛
1

𝑡𝑜𝑘𝑒𝑛
0

from to , respectively.𝑡𝑜𝑘𝑒𝑛
0

𝑡𝑜𝑘𝑒𝑛
1

Additionally, the ZeroSlipFactory exposes
read-only functions for getting the number of pools
through allPoolsLength() and allPools() to get the
address of the pool at the given index.

The deployer of the ZeroSlipFactory can also
set a new fee recipient, i.e. the recipient of the LP
withdrawal fee, through setFeeRecipient(). The fee
recipient can withdraw fees with the withdrawFees()

function.

4.2 ZeroSlipPool
The ZeroSlipPool implements a new trading pair, or
pool, for a pair of tokens with the given parameters
when called from the ZeroSlipFactory. The
ZeroSlipPool is the logic contract for a given pool.
There may exist multiple pools for two tokens in
order to, among other reasons, accommodate
different fee structures and values of . ZeroSlipPool𝑘
is also a ZeroSlipERC20 and implements the
interfaces of ZeroSlipERC20 as described in 4.3.

ZeroSlipPool exposes various functions for
reading the state of and interacting with the contract.
The most notable externally/publicly callable
functions are:

mint(_stakeholder, _tokenIn, _amountIn)

transfers _tokenIn from the _stakeholder to the pool
in the amount defined in _amountIn and sends an
appropriate amount of LPT to the _stakeholder.

3

firstMint(_stakeholder, _tokenIn,

_amountIn) similar to the mint() function but only
callable once. This function should be used when the
first LPT are minted to avoid issues with re-entrancy
attacks. Not using the function for the first mint may
cause issues with fairness of LP reward distribution
later.

burn(_stakeholder, _amountIn, _tokenOut)

reduces the LPT supply by burning _amountIn tokens
from the _stakeholder and sends the _stakeholder an
appropriate amount of the token defined in
_tokenOut. _tokenOut must be one of the tokens in
the pool and there must be a sufficient balance of
those tokens in the pool to honour the claim. Thus, it
may be necessary to make calls to both sides of the
pool to withdraw if the LP provides large amounts of
liquidity in the pool. Burning LPT is subject to fees,
as defined in the beginning of section 4.

swap(_stakeholder, _tokenIn, _amountIn)

exchanges _amountIn of _tokenIn to the other asset
supported by the pool. Subject to fees, as defined in
the beginning of section 4.

It should be noted that the ZeroSlipPool
implements most of its functions with as few checks
as possible in order to minimise gas-expenditures.
Consequently, calling the functions with wrong
parameters may lead to irrecoverable losses. Routers,
or contracts routing orders to the zsAMM, will be
implemented to provide safer means for interacting
with the zsAMM.

The uncommon names of the inner functions
are due to gas optimisations stemming from indexing
order reordering and decreased non-zero data.

4.3 ZeroSlipERC20
ZeroSlipERC20 is the ERC20 contract used for the
representation of LPT. It is a standard OpenZeppelin
ERC20 with 18 decimals and modifications to only
its name and symbol.

5. Use cases
ZeroSlippage’s zsAMM is primarily designed for
computer-driven use. Such use includes, but is not
limited to: a) serving as a liquidity source for
arbitrage bots to enable efficient shifting from one
equal asset to another; b) serving as a liquidity source
for aggregators; c) serving as an interchange for the
implementation of particular types of bridge designs
or other protocols that require the exchange of one
asset for another.

The zsAMM is provided as a public good
where pools implement a zero-fee structure and
liquidity providers do not withdraw their funds. In
such pools, users do not incur any fees but LPs
invariably lose the deposited funds should they burn
the LPT.

Additionally, zsAMM may be used by
human actors. However, it is recommended to use the
less gas-efficient routers intended for this purpose
when interacting with the protocol manually.

The zsAMM may also be used for various
other uses, such as:

1. Migrating from one token to another with
the same properties. Assuming is the new𝑡𝑜𝑘𝑒𝑛

1

token and is the old token, a pool can be set𝑡𝑜𝑘𝑒𝑛
0

up and supplied in the amount of the token𝑡𝑜𝑘𝑒𝑛
1

supply. Setting , , and𝑘 = 1 𝑓
𝑆0

= 100 000 𝑓
𝑆1

= 0

allows token holders to exchange old tokens in a 1:1
ratio to the new token, but not vice versa due to the
100,000 tenths of a basis point (i.e., 100%) swap fee
rate. Burning all the LPT minted at pool creation by
sending them to the 0-address ensures the deployer
does not profit from the migration. Swapping the
token to the new one is free (net of gas costs) to the
old token holders.

2. Migrating from one token to another with
modified properties. Similar to no. 1, should the
issuer of a token want to, for example, change the
denomination of their asset, they could create a pool
where .𝑘 ≠ 1

3. Migration incetivisation. Lowering the
users’ barrier of migrating from one asset to another;
e.g., in the case of fiat-backed stablecoins, a
stablecoin issuer could set the fee to exchange a
competing stablecoin to their stablecoin to zero while
setting the reverse fee high to discourage the reverse
activity. The stablecoin issuer could then redeem the
competitor’s tokens and mint more of their own
token in order to increase the circulating supply of
their token.

4. CLOB replication. The zsAMM can be
used to replicate a CLOB or Uniswap v3 style
AMMs by deploying multiple zsAMMs for the same
asset pair at different quote prices. However, unlike
in CLOBs usually, the makers will pay a fee for
removing their quote through the withdrawal fee
mechanism. The zsAMM mint() and burn()

functions are gas-competitive with the swapping
costs in modern DEXes (see Appendix A), making
posting and removing quotes economically feasible.

4

5. OTC trading. Following from the
CLOB-like properties, the zsAMM can be used as an
OTC trading tool.

6. Peg protection. A reference asset, such as
a rebasing liquid-staking derivative (“rLSD”),
real-world asset, or a stablecoin can improve its peg
to the underlying asset by creating pairs with the
reference asset itself or similar assets. For example, if
an rLSD provider wants its token to be readily
exchangeable and priced equal to Ether, it can set up
a zsAMM pool with low swap fees and to𝑘 = 1
support the price stability.

7. Binary options. A zsAMM can be set up to
replicate a binary option. For example, to create a
binary call option, its writer can create a zsAMM
where is set to the strike price of the asset. They𝑘
can then move the LPT to a time-lock contract that
returns the LPT to the writer at expiry. Option buyers
can redeem the binary option at any point in time by
trading in a special ERC20 for the asset against
which the binary option was written. Furthermore,
the issue of the ERC20 used for redeeming the option
can be efficiently sold & marketed a priori using a
zsAMM.

6. Future versions & modifications
In the zsAMM implementation described in this
paper, is defined at contract creation and cannot be𝑘
changed after the initialisation. Future versions of
zsAMM could include a dynamic zero price impact
AMM, which reads the value from an external𝑘
source, such as an oracle. However, this application
would not strictly be a zero slippage AMM as it
would be possible for a trade to be executed at a
different price than the price when the order was sent
in.

This downside could be mitigated by, for
example, executing trades only at given prices,
effectively turning the AMM into a dynamic zero
slippage AMM, or a dzsAMM. The dzsAMM could
be useful, for example, for creating efficient trading
pairs between various liquid staking derivatives.
Such implementation would have very different risk
parameters and assumptions when compared to the
zsAMM.

Additionally, as referenced in this paper, we
intend to provide routers for accessing the zsAMM
through, for example, more common interfaces and
through functions that implement important safety
checks to improve the user experience of human
users and developers. However, routers will always

add a level of gas inefficiency and advanced users
should consider interacting directly with the contract.
Alternatively, various off-chain checks can be
implemented via APIs to avoid the use of routers
while guaranteeing a level of safety for the end-user.

7. Disclaimer
As of the publication date of this paper the zsAMM
core contracts have not been released for production
and are subject to changes. Prior to entering
production, the zsAMM will be subjected to rigorous
evaluation and the functions or mechanisms
introduced in this paper may change materially.
When interacting with any ZeroSlip contracts, make
sure you understand the differences between the
theoretical and practical implementation.

A yellow paper delving into the final
technical implementation may be produced later.

This paper is for general information
purposes only. It does not constitute investment
advice or recommendation or solicitation to buy or
sell any investment or asset and should not be used in
the evaluation of the merits of making an investment
decision.

This paper does not provide legal,
accounting, or financial advice and any losses
incurred through the direct, indirect, consequential,
or special use of the document are expressly
disclaimed.

This paper reflects the current opinions of the
author and is not on behalf of Ape Capital, LLC.

8. Acknowledgements
A huge thank you to everyone who provided
feedback on the whitepaper. Especially, thank you to
my degen frens and all the hedgefund bros who
provided important and insightful feedback. Thanks
to the anons and pseudonymous apes for
comprehensive comments and for innovating the use
of the zsAMM in CLOB-like applications and as a
binary options system. Thanks to the various
contributors for feedback on mechanism design and
insights into aggregators, bots, and trading systems.

9. References
Adams, H., Zinsmeister, N., & Robinson, D. (2020,

March). Uniswap v2 Core. whitepaper.pdf.
Retrieved January, 2023, from
https://uniswap.org/whitepaper.pdf

5

Adams, H., Zinsmeister, N., Salem, M., Keefer, R., &
Robinson, D. (2021, March). Uniswap v3
Core. Uniswap v3 Core. Retrieved January,
2023, from
https://uniswap.org/whitepaper-v3.pdf

Curve.fi. (2021, June). Curve Documentation (1.0.0).
Curve Documentation. Retrieved January,
2023, from
https://curve.readthedocs.io/_/downloads/en/l
atest/pdf/

Mota, M. (2021, July 17). Understanding StableSwap
(Curve). Understanding StableSwap (Curve).
Retrieved January, 2023, from
https://miguelmota.com/blog/understanding-s
tableswap-curve/

6

Appendix A: Gas Cost Overview
The zsAMM prioritises computational efficiency in its swap functions. The swap functions forfeit various security checks to improve gas efficiency at the cost of potential
losses to the trader if they attempt to swap assets using wrong parameter values. For users who are unwilling to take these risks we recommend using routers.

Tables A1 and A2, present a comparison between the preliminary EVM transaction gas costs between common zsAMM operations and swaps in other common
AMM protocols, respectively. Please note that the figures provided here may not be up-to-date with the deployed contracts and are provided for illustrative purposes only.

swap() burn() mint() createZeroSlipPool()

Gas* 77,658 85,521 88,912 3,252,862

Table A1: Preliminary EVM gas costs comparison between common zsAMM operations
* These are preliminary results from early testing. Actual results may differ.

Protocol Gas savings using zsAMM function

Name Swap function* Gas** swap() burn() mint()

Curve Crypto V2 exchange 212,279 (323,252) 63.4% (76.0%) 59.7% (73.5%) 58.1% (72.5%)

Curve StableSwap exchange 121,359 (238,757) 36.0% (67.5%) 29.5% (64.2%) 26.7% (62.8%)

Uniswap v2
Router01.swapExactTokensForTokens 105,654 (127,530) 26.5% (39.1%) 19.1% (32.9%) 15.8% (30.3%)

Router02.swapExactTokensForTokens 98,980 (135,543) 21.5% (42.7%) 13.6% (36.9%) 10.2% (34.4%)

Uniswap v3
SwapRouter.ExactInputSingle 110,186 (148,309) 29.5% (47.6%) 22.4% (42.3%) 19.3% (40.0%)

NonfungiblePositionManager.Mint 325,526 (486,608) 76.1% (84.0%) 73.7% (82.4%) 72.7% (81.7%)

Table A2: Preliminary zsAMM EVM gas costs comparison against common AMM protocols
* Transactions involving including two tokens only
** Empirical results, lowest (highest) result shown

7

Appendix B: Symbols and Formulas

𝐹
𝑆 Swap fee rate. Defined in tenths of a basis point (1/100 000, i.e. 0.0010%).

𝐹
𝑆𝑎

= 𝐹
𝑆

= 0 ? 0 : 𝑛 𝐹
𝑆

+ 1{ } Absolute swap fee. Where is the amount of . Defined in units of .𝑛 𝑡𝑜𝑘𝑒𝑛
𝑖𝑛

𝑡𝑜𝑘𝑒𝑛
𝑖𝑛

𝐹
𝑆0

Swap fee rate when exchanging to . Defined in tenths of a basis point.𝑡𝑜𝑘𝑒𝑛
1

𝑡𝑜𝑘𝑒𝑛
0

𝐹
𝑆1

Swap fee rate when exchanging to . Defined in tenths of a basis point.𝑡𝑜𝑘𝑒𝑛
0

𝑡𝑜𝑘𝑒𝑛
1

𝐹
𝑊

= 𝐹
𝑆

= 0 ? 1 :
𝐹

𝑆

4 { } Withdrawal fee rate. The amount charged from LPs for exiting the pool. Defined in tenths of a basis point. 𝐹
𝑆

is the swap fee rate applied to .𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡

𝐹
𝑊𝑎

= 𝑛 𝐹
𝑊

+ 1 Absolute withdrawal fee. Where is the amount of . Defined in units of .𝑛 𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡

𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡

𝑘 The exchange rate between two assets. Given as a multiple of within the smart contracts. Must be greater106

than or equal to 1.

𝐿𝑃𝑇 = 𝑅𝑉
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐿𝑃𝑇

LPT value formula. Quoted in .𝑡𝑜𝑘𝑒𝑛
0

𝑅𝑉 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑒
0
 + 𝑘 × 𝑟𝑒𝑠𝑒𝑟𝑣𝑒

1
Reserve value. Quoted in .𝑡𝑜𝑘𝑒𝑛

0

𝑡𝑜𝑘𝑒𝑛
0 One of the two assets accepted by a zsAMM pool. The default quote asset.

𝑡𝑜𝑘𝑒𝑛
1 One of the two assets accepted by a zsAMM pool.

𝑡𝑜𝑘𝑒𝑛
0

= 𝑘 × 𝑡𝑜𝑘𝑒𝑛
1 The zsAMM invariant. All swaps must act in accordance with the invariant, net of fees.

𝑡𝑜𝑘𝑒𝑛
𝑖𝑛 The token that is provided by a trader or an LP to the pool.

𝑡𝑜𝑘𝑒𝑛
𝑜𝑢𝑡 The token that is withdrawn by a trader or an LP from the pool.

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
0

Reserve balance of ; the total amount of in the pool.𝑡𝑜𝑘𝑒𝑛
0

𝑡𝑜𝑘𝑒𝑛
0

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
1

Reserve balance of ; the total amount of in the pool.𝑡𝑜𝑘𝑒𝑛
1

𝑡𝑜𝑘𝑒𝑛
1

8

